On the Zeros of Polynomials with Restricted Coefficients
نویسندگان
چکیده
It is proved that a polynomial p of the form
منابع مشابه
On Classifications of Random Polynomials
Let $ a_0 (omega), a_1 (omega), a_2 (omega), dots, a_n (omega)$ be a sequence of independent random variables defined on a fixed probability space $(Omega, Pr, A)$. There are many known results for the expected number of real zeros of a polynomial $ a_0 (omega) psi_0(x)+ a_1 (omega)psi_1 (x)+, a_2 (omega)psi_2 (x)+...
متن کاملDomain of attraction of normal law and zeros of random polynomials
Let$ P_{n}(x)= sum_{i=0}^{n} A_{i}x^{i}$ be a random algebraicpolynomial, where $A_{0},A_{1}, cdots $ is a sequence of independent random variables belong to the domain of attraction of the normal law. Thus $A_j$'s for $j=0,1cdots $ possesses the characteristic functions $exp {-frac{1}{2}t^{2}H_{j}(t)}$, where $H_j(t)$'s are complex slowlyvarying functions.Under the assumption that there exist ...
متن کاملSome compact generalization of inequalities for polynomials with prescribed zeros
Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$. In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$, $k^2 leq rRleq R^2$ and for $Rleq r leq k$. Our results refine and generalize certain well-known polynomial inequalities.
متن کاملMarkov inequality for polynomials of degree n with m distinct zeros
for all polynomials of degree at most n with real coefficients. There is a huge literature about Markov-type inequalities for constrained polynomials. In particular, several essentially sharp improvements are known for various classes of polynomials with restricted zeros. Here we just refer to [1], and the references therein. Let P n be the collection of all polynomials of degree at most n with...
متن کاملPseudo-boolean Functions and the Multiplicity of the Zeros of Polynomials
Let p : {−1, 1} → R be a polynomial in variables x1, x2, . . . , xn. Since x2j = 1 we can restrict our consideration to multi-linear polynomials in which each variable appears with degree at most 1. Using the observation that every p : {−1, 1} → R symmetric multilinear polynomial can be represented by a polynomial P : {0, 1, . . . , n} → R of a single variable as p(x) = P (|x|) , x = (x1, x2, ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997